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The equations of thermohydromechanics of a two-phase polydisperse medium, taking into 
account growth of crystals only, were obtained in [i]. In this paper, the process of mass 
crystallization is described taking into account the phenomena of homogeneous, hetero- 
geneous, and secondary nucleation. Relations are obtained for the motive forces for nuclea- 
tion and mass transfer accompanying the growth of crystals. 

i. We shall examine a heterogeneous mixture of two phases, of which the first phase 
is the carrying phase (solution of gas), while the second phase is present in the form of 
separate particles of various diameters, under the assumptions used in [i, 2]. The nuclei 
can form by homogeneous as well as heterogeneous and secondary paths. The secondary 
nucleation arises due to abrasion of crystals by the carrying phase. 

Let us introduce at each point of the volume, occupied by the mixture, the volume con- 
tent of the phases ai, as (i = I, 2). We assume that the nuclei are an independent phase: 

R R 

= + Sr r + = + I p Ir r + 

where the dispersion is characterized by the function f(r)dr, which is the number of parti- 
cles per unit volume whose size (volumes) falls in the range r -- dr, r + dr; the indices 
are as follows: 1 indicates the carrying phase; 2 indicates the dispersed phase; 3 indi- 
cates the nuclei; r is the volume of a particle; p, pl, and p~ are the density of the entire 
mixture, the carrying phase, and of the crystal, respectively, n3 is the number of nuclei 
per unit volume (ns = f3rs, ~3 = r3n3, p3 = p~r3n3). Following [I], we introduce the con- 
cept of the r phase: a collection of particles whose sizes (volume) fall in the interval 
(r -- dr, r + dr). Let us denote by ~(r)dr the number of nuclei formed per unit time and 
unit volume from particles belonging to the r-th phase; let Is = 13z + Isu denote the number 
of nuclei arising per unit time and unit volume; Isz is the rate of homogeneous, hetero- 

) geneous nucleation; Isu is the rate of secondary nucleation Iau ~+~;(r)dr . Then, the equa- 

tions for conservation of mass of the carrying (r-th) phase of nuclei and the masses of the 
component in volume x will assume the form 

,! ~ 9zd: = --,i ~ ,o,v~dS --,! ~ p~/~ArdT- .! 9~;'313:d:, 

S I g/- [p~ dT = - -  f (p~ v: (r)dS q- f P ~ If(r)~[(r)  - - / ( r q -  dr) ~1 (r z- k r)] d , - -  p~r,,[~ (r) A rdv, 
T S ~ 

T S "~ : S 

where S is the surface of volume T; ~ is the rate of change of the volume of a particle; c 
is the mass concentration of matter in the solution; v i is the velocity of the i-th phase. 
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Applying the Gauss-Ostr0gradskii equation and passing to the limit Ar-~ 0, we obtain 
t h e  d i f f e r e n t i a l  e q u a t i o n s  f o r  b a l a n c e  o f  t h e  n u m b e r  o f  p a r t i c l e s ,  n u c l e i ,  c o n s e r v a t i o n  o f  

mass of the carrying phase and the component 

0 0 
o~- f + div (Ivy) + ~ In = --  _* ~'~ ( lo l )  

r0! 
~7 n ;  -k d i v  (nava) = I~ - -  f ~ a ,  

B 

o S 0-F P~ + d iv  p~v~ = -- p~ -- p~ 

P ~ F  = (c - -  t )  P~ n- P ~  , d-F = 0-7 + 

4 

As in [i], we obtain an equation for conservation of the momenta of the phases, written in 
differential form: 

R R 
h h 

dp-~ ~ V P  -.- 7 ~ , - -  i' P~  dr  - -  P.~f~ (r.) + o~F~ - -  S P~ (vr,  'h )  dr  - -  o . , . . . .  92rax ~1 tv12 (r~,) - -  v j ;  (i 2) Pz dt 
% 

~Sr~l)t = - -  ] r V P  + + - -  ' 

R 

d 8v8 ' ~  

r8- 

@ p~raIal (v12 (ra) - -  v a ) .  pT,'~/an3 (vl~ (r~) - -  v=), 

D. z 0 h h 0 d3 O s~, 
Dt  - -Ot  " F/V " i -~] &" dt - - o r  ~ uaV 

(it was assumed that with the abrasion of particles with volume ~(r -- dr, r @ dr) ~ the momen- 
tum of the r-th phase did not change, while the nuclear phase acquired the momentum 
p~rsv~(r)~'(r)dr). Here, i12(r) is the force of interaction between the carrying phase and an 
inclusion of size r (volume); F~ is the external mass force, acting on the i-th phase (i = 
i, 2, 3); and vn(r) is the velocity of the carrying phase on the surface of contact between 
the phases. 

2. We shall use the hypothesis that the fundamental thermodynamic characteristics are 
additive with respect to the masses of the phases. As in [i, 2], we shall introduce the 
surface component of the internal energy of the mixture, taking into account the surface 
effect : 

R 

R 
I p~v~ + ~ o, ~ ~ pK = P~lr --T dr + p8 T '  

+ 
r 3 

w h e r e  u ,  u l ,  a n d  u 2 ( r )  a r e  t h e  s p e c i f i c  i n t e r n a l  e n e r g y  o f  t h e  e n t i r e  m i x t u r e  a n d  t h a t  o f  

1 = 4 v a 2 u o ;  1 a n d  ue  a r e  t h e  s u r f a c e  e n e r g i e s  the carrying and r-th phases, respectively; u o u o 
for a single inclusion and per unit surface, respectively; a is the radius of a particle; uz 
is the internal energy of a nucleus; K is the kinetic energy of the mixture. Reasoning as 
in [i, 2], we obtain the differential equations for the internal energies of the phases and 
the separation surface of the phases: 
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d~u 1 a~P dO~ ~ ~ f 

,2 
R 

§ • (r~) p~f~, (r~) (v I - -  v~) _ ,..[ p0]~ 1 (v~_ --g vQ: dr - -  p~ (%~ --2 vl): 

r 3' 

B 

vq __ i" [_  ~ - -  ' p~/~xme ) (r) - -  q~( r ) ]  dr --  p~ ) (r~) - -  q~(r~) -5 p~O~; "m 
r 3 

p~fr -5[-D~u~ ~ / @ ,  ~ P ~Td Pc~ • • f .  ~. (r) (v~--v~) 

D~ %t 2~ o 
/ --5/- = / q  7 -- Pe/nx~(n) (r) + q~e (r) + q~o (r); 

(2.1) 

(2.2) 

(2.3) 

R 

da = P d o 
p~ ~ ua p--~ o~3 ~7 P2 -~- f3~As~ @ J ~ (r) A~, (r) dr 

--l- '~~ l (~2 (r~) --  ~)~ 

(2.4) 

0 , - -  p2r3lal]a 
V \ 2  

R 

p~ f_ ~ (r) 

R. 
(w. (~) --  vs) ~ " dr -i ~ qla (ra) - -  p~ - -  p~ j ~ (r) xsudr, 

where xi(:2)(r) are the fluxes of heat from the i-th phase to the matter undergoing the 
transformation 1+2; qio(r) are the heat fluxes from the i-th phase to the surface separating 
the phases; o is the surface tension of the interphase boundary; x3 and Xau are the heat 
fluxes related to the formation of nuclei by different methods (homogeneous, heterogeneous, 
and secondary paths); A3~ and Asu are the work of formation of a nucleus, per single inclu- 
sion from the carrying phase and due to abrasion, respectively; the coefficient ~i(r) shows 
the fraction of the kinetic energy of the mixture transforming into the internal energy of 
the i-th phase, due to the force interaction between the carrying phase and particles of 
size r: 

\ 
[ ! +  [• (r)-~ • (r)] d r +  • (r~)@ • (r,)) = i; 

/ 

p tQ ,  and p ~  a r e  t h e  i n t e n s i t i e s  o f  t h e  v o l u m e  s o u r c e s  o f  h e a t ;  a i s  t h e  r a d i u s  o f  a 
p a r  t i t l e .  

We o b t a i n  a r e l a t i o n  f o r  t h e  t o t a l  d e r i v a t i v e  o f  t h e  t o t a l  e n e r g y  o f  t h e  m i x t u r e  pE = 
pu + pK 

R R 
dE die , ~ d2E 2 y d 2  E1 

P ~ y =  P l ~ y -  @ P~fr-"~-Fdr+ f T  dr (2.5) 

R B 

+ o~ i i  E~ + o~ (E~ - El) dr + p~ [E~ - -  E d  § p~ (r) E~ - -  E~ + Oo--- r 

S t a r t i n g  f rom  t h e  d e f i n i t i o n  ( 2 . 5 )  and t h e  e q u a t i o n s  f o r  t h e  c o m p o n e n t s  o f  t h e  e n e r g y  o f  t h e  
mixture (2.1)-(2.4) and momenta (1.2)-(1.4), we present an explicit expression for the total 
derivative of the total energy of the mixture in the form 
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R 

p ~ y =  - -  
P P 2~ p% + -~- xi(te) - -  x..(l~_) + xvoe)Idr 

p 
R 

' z "qi- 
~3 

.... Xa~, Cb" -- V ~ l P v  i ~ 

R ?- [~ 

-- I V (frPv~z),dr - -  V "~.~Pv~) = v ~ ~ -- Vq~ - -  p~FD-~ + ( p:,rfF.,vodr-- p~Fav~ -- 9~Q~ 7- p~ odr. 
r~ r 3" r~ 

From the definition of dE/dt, it follows that the change in the total energy of the mixture 
is determined only by the external action. Then, the expressions on the right side (energy 
source type) must equal zero: 

xi(lo.) + x2(n) + x~(~) = i z - -  ~.1, xi(~:) (ra) q- xa = Ua + 
P Aa 1 

il, po ' pOr3 

The work of formation of a nucleus out of the homogeneous phase on surfaces (dust particles, 
impurities) equals, respectively, [3] 

Aal(hom)= ~ ,  Aal(het) --  3 [ 2 ( i . - - c o s O - -  s in20cosO] ,  

where 0 is the contact angle. In order to specify the model it is necessary to determine 
the energies xk(ij). We shall postulate these relations as follows: 

xut~ ) ( r ) = x 2 ( m ( r )  = O~ r ~ [r~, R ] ,  x ~ ( m  = i= - -  G r 4= rs,, 

I f a -  il - -  pOa-"- ~ for homogeneous, 

Xn ---- o [2 (t - -  cos O) - -  sin~O cos O - -  8] 
] i8 - -  i 1 -~- 9~a~ 4 for heterogeneous 

nucleation. 

3.  L e t  u s  a s s u m e  t h a t  ~1 = 1, z2(r) = 0, r~[ra,. R ] ,  vi~(r) = us(r), a n d  q i o  = 4 w a 2 B i ( T i -  
To). Then, the system of equations describing the interpenetrating motion of the two- 
phase polydispersed mixture taking into account the growth and formation of nuclei has the 
form 

R 
0 

Px + div  plvl  = - - ] 5  P~ p~l~lra, 
4 

0 0 ~ r  
~-7/+ d iv /v~  + ~r[~l = --7 ~' 

pl ~ = (c - -  l) p~ + p~ , 

pOr2 r a . d iv  lava I 

(3.z) 

~lVl 
R 

4 

R 

o~ P d n ( r ~ )  + PlF1 5 o v - -  - -  O ~ i . ~  ( ~ - -  vl) dr  - -  p ~ I s l r 8  ( v 8  - -  %), 
r$ 

pOX_ D2V2 2/r--D-7-- = - - / r V P  + p~frfl~ + p~ 
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sis : 
. 

R j. 
ds a s ~ P  -b psfx~ q- psF= (rs) + p~ , (r) [vs (r) - -  n l  dr ,  p, "~-'/-" v, = -- 

4 
R 

d l u  I ~1 P d o kl kl f 

4 
R 

+ P~fn (r~) (v~ - -  v~) - -  -.1" P~]~~ (v, --2 v~)~ dr - -  e~I~r~ (v~ --2 - V1)~ 

R 

- -  vq~ - -  J' 4 n a S I ~  (r~ - -  r~)  d r  - -  4ga~n~ 1 (T a - -  r~) + P~Qa, 
4 
D~% %pd o 

p~fr Dt = p~d---T p~ --4"a~3'f:(T~ - -  Ta) 4- p~/rq~, 

Dsu~ 2a 
p d ~  ( ,- - t O ,  I - W [ "  = I~ ~ + 4~a~[td (T~ - -  Y~) + 4ua~l[4 (T,  - -  To) - -  o 

R 

d~ P d _o (v~ -- ~) dr -~ 4~a~n~t (T~ - -  r~) p ~ T u ~ = a 3 - S ~ - d T p ~ +  p~ ap 2 
P~ + 

r3 

The additivity of the entropy of the mixture follows from the additivity hypothe- 

R 

O r pS p~S~ -t- j" [P~JrS2 q- JS~] dr § naS~ (S~ = p~, aS3). 

rt 
Using the Gibbs relations, having the form 

p dl~'l Pl dl P d I i ~1r dole ~15 dcl$ 
i~= TI dt ul q-pl TI at p0 TI d--T--- r I dt" 

d~S~ r dzu ~ r d z i 

f'~ = r ,  +o I dt 

l a t  - -  r a a t  ] ~ d4~a 2, na dt  - -  T 3 at  n 3 - ~  d4ga] 

[where ~ik is the chemical potential of the k-th component in the carrying phase; Clc and 
Cls are the mass concentrations of the component and solvent (for simplicity, we assumed 
that only a single component participates in the phase transition)], and the equations for 
the heat inflows and conservation of the components (2.1)-(2.4), (i.i), and (3.1), we write 
an explicit expression for the total derivative of the entropy of the mixture 

Ol o. rQ~ . Q~ 
o.. .~s ot  -- vq~ § P~ E-~ q- 9 ' I ' -~arq-P~ 'Y '~a  (4.1) 

[ f /  / ) i i  /] "qla 1 t dr + ql~(ra) 1 1 , 1 1 
+ T ~  T a" T~ 1, I ~ q2~ r ~  ~ dr 
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,+ 

T t T 1 T~ I' a T~ ~ " 2T 1 j 

= ==_ ~ +p>-- 

+ plr, ~'2 t~ (r) S.~ § 
7 

~ e  f i r s t  term i n  (4 .1)  ( t he  e x p r e s s i o n  i n  the  f i r s t  b r a c k e t )  de termines  the i nc rease  i n  
en t ropy  o f  the m i x t u r e  due to the i n f l o w  of en t ropy  from o u t s i d e  due to exchange w i t h  the 
external medium, and the remaining terms determine the increase in entropy of the mixture 
due to internal irreversible processes within a phase or between phases (always nonnegative) 
and represent the sum of products of thermody.namic forces by thermodynamic fluxes. The 
fluxes are assumed to be as follows: jkl = TkDis the flux of viscous stresses; jF = f1~ 
is the flux of the mechanical interaction force between phases; jio = qio is the heat flux 
from the i-th phase to the phase separation surface; J12(r) = p~fqdr is the flux of mass out 
of the carrying phase into the r-th phase; J13 = P2~ is the flux of mass out of the 
carrying phase into the nuclear phase; J2~ = p~ is the flux of mass out of the r-th 
phase into the nuclear phase. Let us enumerate the motive forces: xkl = ekl/T: is the re- 
duced tensor of the deformation velocities of the carrying phase; X F-~ [v~(r) --vl] is the 
motive force arising due to the fact that the phase velocities do not coincide; xij = 
(I/Tj -- i/Ti) (i = i, 2, j = o, 3) is the motive force arising due to the temperature non- 
equilibrium between the j-th and i-th phase; 

X n  ~tlc  ~ 1 ~ C l c  ~ i s ,~  i I i~ (v~ - -  vi)~ 
- -  T 1 I '  1 T i ~ T---~-- T--~'a ~ - S = - S 1  ( 4 . 2 )  2T i 

is the moving force of mass transfer of matter from the carrying phase into the r-th phase; 

X I  3 ~5~ ~lcqc ~ls.Cu i~ i~ (v~ - -  v~) ~ 
- -  T~ T~ T~ -~- ~ - -  ~'a -~ Sa - -  S~ 2T z ( 4 , 3 )  

is the motive force for transition of matter out of the carrying phase into the nuclear 
phase; 

X~= = [S= - -  S o . ]  - -  [ ~  - ' ~ ]  i T= " +  .2--~a (v~ - -  v=) (4 .4)  

(~= s= @+s~ - n~ 
~I---7-, ~= =,~, ~I ~ "  

is the motive force for transition of matter out of the r-th phase into the nuclear phase 
(secondary nucleation). 

We introduce the notation: @is = l(Ti- Ts)/TsI, @to = l(Ti- To)/Tol, where T s is 
the saturation temperature. For sufficiently small deviations of the phase temperatures 
T i (i = i, 2) from the saturation temperature T s (~is << i, @to << i), the linearized (rela- 
tive to deviations from the equilibrium state) equations of state of the phases have the 
form 

i~ = i:= + h h  q- C:t(T 1 - -  T=), Q = i~= -6 C~(T~ - -  T=). ( 4 . 5 )  

Substituting (4.5) into the expressions for the motive forces (4.2) and (4.3), neglecting 
terms higher than first order infinitesimals relative to @ij and taking into account also 
the relations [4] 

~ 3 -  T3Sa o4~a~ - + ~=, L -  T ~  = o4== + 7=, 

we represent the motive forces for growth and formation of crystals in the form 
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X12= T1 r~ + Ah --~ T~ § i~, T2 

r 1 1" 3 Tap~ -~- i 1 "Ta 

x.~= ~ r~ +%-~ 

r~ j 

F 2 ~- ~ (v2-V3)- -r- p0r3 3 aT  3 

(4.6) 

(4.7) 

(4.8) 

where 
~o 

The d i f f e r e n c e  between (4.6) and the  g e n e r a l l y  accepted  express ion  fo r  the motive f o r c e  of 
mass transfer stems from the presence of the two last terms, owing to the temperature and 
velocity nonequilibrium of the phases. Due to the smallness of the mass of the nuclei, 
the difference in the temperatures Ta and TI, the velocities v3 and vl can be neglected; 
then, the relation X13 coincides with the expression for the motive force of nucleation 
(homogeneous, heterogeneous), obtained in [5]D and is written in the form 

o4~a~ 
X13 = ~1e--~3 p~r~ 

I t  has been determined e m p i r i c a l l y  t h a t  secondary n u c l e a t i o n  depends on the v e l o c i t i e s  of 
the f low around a c r y s t a l ,  the  s u r f a c e  t e n s i o n  f o r c e ,  and the tempera ture  of the s o l u t i o n ,  
which agrees with relation (4.8). 
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